Categories
บทความ ไฟฟ้า-อิเล็กทรอนิกส์

เซอร์โวมอเตอร์

เซอร์โว​มอเตอร์  (servo motor)  เป็น​อุปกรณ์ แม่เหล็ก​ไฟฟ้า​แบบ​หนึ่ง​ที่​ใช้​ใน​การ​หมุนตัวขับ (actuator) ไป​ยัง​ตำแหน่ง​ต่างๆ  ด้วย​ความ​แม่นยำ โดย​ใช้สัญญาณ​พัลส์​เพื่อ​กำหนด​ตำแหน่ง​ในการ​หมุน​  มัก​นิยม​ใช้​ใน​รถ​บังคับ​วิทยุ เครื่องบิน​บังคับ​วิทยุ หรือ​ใช้​ควบคุม​แขนขา​ของ​หุ่นยนต์ ส่วนใหญ่​จะ​รู้จัก​กัน​ภายใต้​ชื่อว่า RC เซอร์โว​มอเตอร์ โดย​คำ​ว่า RC  มาจาก Radio Control หรือ​การ​บังคับ​ด้วย​วิทยุ เนื่องจากใน​ยุค​แรกๆ ของ​การ​พัฒนาเซอร์โว​มอเตอร์ จะ​ถูก​นำมาใช้​ใน​งาน​วิทยุ​บังคับ​เป็นหลัก

ปกติ​แล้ว​เซอร์โว​มอเตอร์​ที่​ยัง​ไม่​ได้รับการ​ปรับ​แต่ง​ใดๆ นั้น​จะ​ใช้​ใน​การ​ควบคุม​ตำแหน่ง​ของ​อุปกรณ์  เช่น  การ​บังคับ​เลี้ยว​ของ​รถ​บังคับ​วิทยุ หรือ​ใช้​สำหรับ​ปรับ​หางเสือ​ของ​เรือ​หรือ เครื่องบิน ซึ่ง​งาน​เหล่านี้​ต้องการ​แรง​บิด​
ของ​มอเตอร์​ที่สูง​พอสมควร  ดังนั้น​เซอร์โว​มอเตอร์​จึง​ต้อง​มี​อัตรา​ทด​ที่​มากพอ เพื่อให้​สามารถ​รองรับ​งาน​ดังกล่าว​ได้ เซอร์โว​มอเตอร์​มาตรฐาน​จะ​มี​มุม​ใน​การ​หมุน​อยู่​ระหว่าง 90 ถึง 180 องศา แล้วแต่ ผู้ผลิต แต่​ที่​นิยม​มาก​ที่สุด​คือ 0 ถึง 180 องศา และ​ใน​บาง​รุ่น​ของ​บาง​ผู้ผลิต​จะ​สามารถ​ดัดแปลง ให้​หมุน​ได้​ครบ 360 องศา​ด้วย

ปัจจุบัน​เซอร์โว​มอเตอร์​มี​ด้วยกัน  2  ชนิด​หลักๆ คือ ชนิดอะ​นา​ลอก​และ​ดิจิตอลรูปร่าง​ภายนอก​ของ​เซอร์โว​มอเตอร์​ทั้งสอง​ชนิด​จะ​คล้าย​กัน​มาก ความ​แตกต่าง​จะ​อยู่ที่​วงจร​ควบคุม​ที่อยู่ภายใน โดย​ใน​ชนิดอะ​นา​ลอก​จะ​ใช้​วงจร​อิเล็กทรอนิกส์​ที่​ประกอบด้วย​อุปกรณ์  สารกึ่ง​ตัวนำจำพวก ทรานซิสเตอร์ มอสเฟต หรือ​ไอซีออป​แอมป์​เป็นหลัก ในขณะที่​ชนิด​ดิจิตอล​จะ​ใช้ ไมโครโปรเซส​เซอร์​หรือ​ไมโคร​คอนโทรลเลอร์​เป็น​ตัวควบคุม​หลัก

โครงสร้าง​ของ​เซอร์โว​มอเตอร์
ภายใน​เซอร์โว​มอเตอร์​ประกอบด้วย มอเตอร์​ไฟ​ตรง​ขนาดเล็ก,ชุด​เฟือง​ทด,  แผง​วงจร​ควบคุม และ​ตัว​ต้านทาน​ปรับ​ค่า​ได้  (POT : Potentiometer) โดย​แผง​วงจร​ควบคุม​จะ​มี​วงจร​ป้อน​กลับ เพื่อให้เซอร์โว​มอเตอร์​รับรู้​ตำแหน่ง​ของ​ตัวเอง​ได้ โดย​ผู้ใช้งาน​เพียง​ส่งสัญญาณ​พัลส์​ออกไป​ควบคุม​เท่านั้น ดัง​แสดง​ไดอะแกรม​การ​ทำงาน​ของ​เซอร์โว​มอเตอร์​ใน​รูป​ที่ 1 แกน​ของ​มอเตอร์​ไฟ​ตรง​จะ​ต่อ​เข้ากับ ชุด​เฟือง​เพื่อ​ลดความเร็ว​รอบ​ลง​ส่งผลให้​แรง​บิด​ที่​แกน​หมุน​มากขึ้น ทั้งหมด​ทำงาน​ร่วมกัน​ภายใต้ ความ​สัมพันธ์


รูปที่ 1 แสดงไดอะแกรมการทำงานของเซอร์โวมอเตอร์

P = kwg

โดย​ที่ P คือ พลังงาน​ที่​ป้อน​ให้​แก่​มอเตอร์
k คือ ค่าคงที่
w คือ ความเร็ว​รอบ ใน​หน่วย รอบ​ต่อ​นาที (rpm : round per minute)
g คือ แรง​บิด​หรือ​ทอร์ค (torque)

ถ้าหาก​พลังงาน​ที่​จ่าย​ให้​คงที่ เมื่อ​ลดความเร็ว​รอบ​ลง​นั่น​ย่อม​ทำ​ให้แรง​บิด​ของ​มอเตอร์​เพิ่มขึ้น การ​หมุน​ของ​มอเตอร์​ได้รับ​การ​ควบคุม​จาก​วงจร​ควบคุม โดย​มี​ตัว​ต้านทาน​ปรับ​ค่า​ได้​เป็นตัวกำหนด​ขอบเขต​ของ​แกน​หมุน ซึ่ง​หาก​ไม่มี​การ​ปรับ​แต่ง​ใดๆ แกน​หมุน​ของ​มอเตอร์​จะ​สามารถ​หมุน​ได้​ใน​ขอบเขต 0 ถึง 180  องศา (หรือน้อยกว่า​ขึ้นกับ​ผู้ผลิต) ดังนั้น​ใน​การ​ปรับ​แต่ง​ให้เซอร์โว​มอเตอร์สามารถ​ขับ​แกน​หมุน​ได้​รอบตัว​จึง​มักจะ​ใช้วิธีการ​ถอด​ตัว​ต้านทาน​ปรับ​ค่า​ได้​ออก แล้ว​แทนที่​ด้วย​ตัว​ต้านทาน​ค่าคงที่  2  ตัว  หรือ​ดัดแปลง​ให้​แกน​หมุน​ของ​ตัว​ต้านทาน​ปรับ​ค่า​ได้​สามารถ​หมุน​ได้​รอบตัว แกน​หมุน​ของ​เซอร์โว​มอเตอร์​จะ​มี​ส่วนปลาย​เป็น​ร่อง​เฟือง (spline) เพื่อให้​สามารถติดตั้ง​อุปกรณ์​ที่​ใช้​ใน​การ​เชื่อมโยง​ไป​ยัง​ตัว​ขับ​หรือ​กลไก​อื่นๆ อุปกรณ์​ที่​ใช้​เชื่อมโยง​นั้น​เรียกว่า ฮอร์น  (horn) ซึ่ง​มี​ด้วยกัน​หลาย​รูปแบบ​ทั้ง​แบบ​เป็น​แขน, เป็น​แท่ง, กากบาท, แผ่น​กลม เป็นต้น สำหรับ​ร่อง​เฟือง​ของ​เซอร์โว​มอเตอร์​แต่ละ​ยี่ห้อ​ก็​มีจำนวนไม่เท่ากัน โดย​ของ Hitec จะ​มี 24 ร่อง​เฟือง ส่วน​ของ Futaba มี 25 ร่อง​เฟือง ทำให้​ฮอร์น​ของ​ทั้งสอง​ยี่ห้อ​ไม่​สามารถ​ใช้​ร่วมกัน​ได้


รูปที่ 2 แสดงการจัดสายสัญญาณของเซอร์โวมอเตอร์


รูปที่ 3 ลักษณะคอนเน็กเตอร์ของเซอร์โวมอเตอร์

คุณสมบัติ​ทาง​เทคนิค​ที่​สำคัญ​ของ เซอร์โว​มอเตอร์
มี 2 ค่า​คือ ความเร็ว (speed) และ​แรง​บิด​หรือ​ทอร์ค (torque) ความเร็ว​หมายถึง ระยะเวลา​ที่​ทำให้​แกน​หมุน​ของ​มอเตอร์​เคลื่อนที่​สู่​ตำแหน่ง​มุม​ที่​กำหนด อาทิ เซอร์โว​มอเตอร ตัว​หนึ่ง​มี​ความเร็ว 0.15 วินาที​สำหรับ 60 องศา หมายถึงเซอร์โว​มอเตอร์​ตัว​นี้​สามารถ​ขับ​ให้​แกน​หมุน​เคลื่อนที่​ไป​ยัง​ตำแหน่ง​มุม 60 องศา​ภายใน​เวลา 0.15 วินาที ส่วน​แรง​บิด​มักจะ​ปรากฏ​ใน​หน่วย​ของ​ออนซ์-นิ้ว (ounce-inches : oz-in) หรือ กิโลกรัม-เซนติเมตร (kg-cm) เป็น​คุณสมบัติ​ที่จะ​บอกต่อ​ผู้ใช้งาน ว่า​เซอร์โว​มอเตอร์ตัว​นี้​มี​แรง​ใน​การ​ขับ​โหลด​ที่​มี​น้ำหนัก​ใน​หน่วย​ออนซ์​ให้​สามารถ​เคลื่อนที่​ไป​ได้ 1 นิ้ว หรือ​น้ำหนัก​ใน​หน่วย​กิโลกรัม​ให้​เคลื่อนที่ ไป​ได้ 1 เซนติเมตร  (น้ำหนัก 1 ออนซ์​เท่ากับ 0.028 กิโลกรัม​โดย​ประมาณ หรือ 1 กิโลกรัม เท่ากับ 35.274 ออนซ์)

อย่างไร​ก็ตาม ค่า​ของ​ความเร็ว​และ​แรง​บิด ต้อง​สัมพันธ์กับ​แรงดัน​ไฟ​เลี้ยง​ที่​จ่าย​ให้​แก่เซอร์โว​มอเตอร์​ด้วย ซึ่ง​มักจะ​แรงดัน 4.8 หรือ 6V  นอกจากนั้น​ยังมี​ปัจจัย​เกี่ยวกับ​แรง เสียด​ทาน​ใน​ระบบ​เฟือง​ภายใน​เซอร์โว​มอเตอร์ การ​หล่อลื่น​การ​เชื่อมโยง​ระหว่าง​เฟือง​ต่อ​เฟือง​ใน​ชุด​เฟือง​ทด ที่​ส่งผลให้​ความเร็ว​และ​แรง​บิด​ของ เซอร์โว​มอเตอร์​เปลี่ยนแปลง​ไป​ได้

การ​ทำงาน​ของ​แผง​วงจร​ควบคุม​ใน เซอร์โว​มอเตอร์​ชนิดอะ​นา​ลอก
การ​หมุน​ของ​เซอร์โว​มอเตอร์​นั้น​จะ​ไม่ได้​หมุน​เป็นอิสระ​เหมือน​มอเตอร์​ทั่วๆ ไป​โดย​ช่วง​ระยะ​การ​หมุน​ปกติ​จะ​อยู่​ระหว่าง 90 ถึง 180 องศา ตำแหน่ง​การ​หมุน​ของ​แกน​มอเตอร์​ใน เซอร์โว​มอเตอร์​นี้​สามารถ​ควบคุม​ได้​อย่าง​แม่นยำ เนื่องจาก​ภายใน​เซอร์โว​มอเตอร์​มี​วงจร​อิเล็กทรอนิกส์​ทำหน้าที่​ตรวจสอบ​ตำแหน่ง​ของเซอร์โว​มอเตอร์​อยู่​ตลอด​เวลา ลักษณะ​การ​ตรวจสอบ​จะ​ใช้​การ​ป้อน​กลับ​ค่า​ตำแหน่ง​จาก​ตัว​ต้านทานปรับ​ค่า​ได้ แล้ว​นำ​ค่า​นี้​ไป เปรียบ​เทียบกับ​ค่า​พัลส์ที่​ป้อน​เข้าทาง​ขา​ควบคุม ​ค่า​ของ​ผล​ต่าง​ที่​ได้จะ​ไป​ปรับ​ตำแหน่ง​ของ​มอเตอร์ ​ค่า​ผล​ต่าง​ก็​จะ​ได้ตำแหน่ง​ของ​มอเตอร์​ที่​แม่นยำ


รูปที่ 4 ไดอะแกรมการทำงานของแผงวงจรควบคุมในเซอร์โวมอเตอร์ชนิดอะนาลอก

ใน​รูป​ที่ 4 แสดง​ไดอะแกรม​การ​ทำงาน​ของ​แผง​วงจร​ควบคุม​ใน​เซอร์โว​มอเตอร์​ชนิดอะ​นา​ลอก สัญญาณ​พัลส์​ควบคุม​ที่​ส่ง​เข้ามา​ทาง​อินพุต จะ​ถูก​ส่งไปยัง​วงจร​กำเนิด​สัญญาณ​พัลส์​ภายใน​ด้วย โดย​มี​ความ​กว้าง​ที่​เป็น สัดส่วน​กับ​ตำแหน่ง​ของ​แกน​หมุน​ใน​ปัจจุบัน​ ทั้ง​สัญญาณ​พัลส์​ที่​กำเนิด​ขึ้น​ภายใน​กับ​สัญญาณ​พัลส์​ควบคุม​จะ​ถูก​ส่งไปยัง​วงจร​เปรียบเทียบ​เพื่อ​ทำการ​หักล้าง​สัญญาณ โดย​ทิศทาง​ของ​สัญญาณ​จะ​ขึ้นอยู่​กับ​ว่า ระหว่าง​สัญญาณ​พัลส์ควบคุม​ทาง​อินพุต​ก​ับสัญญาณ​พัลส์​ภายใน สัญญาณ​พัลส์​ใด​มี​ความ​กว้าง​มากกว่า โดย​เอาต์พุต​ที่​ได้​เป็น​สัญญาณ​ลอจิก “0” หรือ “1” แล้ว​ส่งไปยัง​วงจร​ขับ​มอเตอร์​แบบ  H-บริดจ์ เพื่อ​กำหนด​ทิศทาง​การ​หมุน ทาง​ด้าน​ค่าความ​แตกต่าง​ที่​เกิดขึ้น​ระหว่าง​พัลส์​ทั้งสอง​สัญญาณ​จะ​ถูก​ส่งไปยัง​วงจร​เพิ่ม​ความ​กว้าง​พัลส์ เพื่อ​สร้าง​สัญญาณ​พัลส์​สำหรับ​ส่งไปขับ​มอเตอร์ ผ่าน​วงจร​ขับ​มอเตอร์​แบบ  H-บริดจ์ โดย​ความ​แตกต่าง​ของ​ความ​กว้าง​พัลส์ 1% ทำให้เกิด​สัญญาณ​พัลส์​สำหรับ​ขับ​มอเตอร์ใน​ระดับ 50% และ​ความเร็ว​นี้​จะ​ลดลง​เมื่อ​แกน​หมุน​ของ​มอเตอร์​เคลื่อนที่​เข้าสู่​ตำแหน่งที่​กำหนด อัน​เป็นผล​มาจาก​ความ​แตกต่าง​ของ​ความ​กว้าง​สัญญาณ​พัลส์​เริ่ม​ลดลง และ​หยุด​ลง​เมื่อ​สัญญาณ​พัลส์​ที่​นำมา​เปรียบเทียบ​มี​ค่า​ความ​กว้าง​เท่ากัน


รูปที่ 5 แสดงลักษณะของสัญญาณพัลส์ที่ใช้ในการควบคุมเซอร์โวมอเตอร์

วัสดุ​ของ​เฟือง​ใน​เซอร์โว​มอเตอร์
ชุด​เฟือง​ใน​เซอร์โว​มอเตอร์​โดย​ส่วนใหญ่ผลิต​มาจาก​วัสดุ 3 ชนิด คือ

(1) ไน​ล่อน : เป็น​วัสดุ​ที่​นิยม​นำมาใช้​ผลิตเฟือง​มาก​ที่สุด เนื่องจาก​มี​น้ำหนัก​เบา​และ​มีเสียง​รบกวน​น้อย​เมื่อ​ทำงาน ความ​ทนทาน​พอสมควร​มัก​พบ​ใน​เซอร์โว​มอเตอร์ขนาดเล็ก​และ​ราคาถูก

(2) โลหะ : เฟือง​ที่​ผลิต​ด้วย​โลหะจะ​มี​ความทน ทาน​สูง แข็งแรง สามารถ​ทน​แรงเสียดทาน​เมื่อ​เฟือง​ขบกัน​ได้​สูงมาก ทำให้​สามารถ​นำมา​สร้าง เซอร์โว​มอเตอร์​ที่​มี​แรง​บิด​สูงมาก​ได้ โลหะ​ที่​พบ​มาก​ที่สุด​ใน​การ​นำมา​ผลิต​เฟือง​คือ ทองเหลือง และ​ถ้าหาก​มี​งบประมาณ​มาก​เพียงพอ ควร​เลือก​ใช้​เซอร์โว​มอเตอร์​ที่​ใช้​เฟือง​ที่​ผลิต​จาก​ไทเทเนียม

(3)  คาร์บอ​ไนต์ (Karbonite) : เป็น​วัสดุ​พิเศษ​ที่​ทำ​มาจาก​คาร์บอน แล้ว​แปรรูป​มา​เป็นวัสดุที่​คล้าย​พลาสติก  Hitec  เป็น​ผู้​ที่​นำ​เทคโนโลยี​นี้​มา​ใช้​เป็น​วัตถุดิบ​ใน​การ​ผลิต​เฟือง โดย​คาร์บอ​ไนต์จะ​มี​ความ​แข็งแรง​และ​ทนทาน​มากกว่า​เฟือง​ไนลอน ในขณะที่​มี​น้ำหนัก​เบา ดัง​ใน​เซอร์โว​มอเตอร์​สมัยใหม่​จึง​นิยม​ใช้​เฟือง​ที่​ผลิต​จาก​วัสดุ​ชนิด​นี้ โดยเฉพาะ​อย่างยิ่ง​ใน​เซอร์โว​มอเตอร์ชนิด​ดิจิตอล​ที่​ใช้​หุ่นยนต์ Humanoid

รูปแบบ​สัญญาณ​ที่​ใช้​ควบคุม​เซอร์โว​มอเตอร์
การ​ควบคุม​เซอร์โว​มอเตอร์ทำได้โดย​สร้าง​สัญญาณ​พัลส์​ที่​มี​คาบ​เวลา 20 มิลลิ​วินาทีป้อน​ให้​กับ​วงจร​ควบคุม​ภายใน​เซอร์โว​มอเตอร์ดัง​รูป​ที่ 5 แล้ว​ปรับ​ความ​กว้าง​ของ​พัลส์​ช่วง​บวก ที่​พัลส์​กว้าง 1 มิลลิ​วินาที มอเตอร์​จะ​หมุน​ไป​ตำแหน่ง​ซ้ายมือ​สุด  ถ้า​ส่ง​พัลส์​กว้าง 1.5  มิลลิ​วินาที แกน​หมุน​ของ​มอเตอร์​จะ​เคลื่อนที่​ไป​ยัง​ตำแหน่งกึ่งกลาง และ​ถ้า​ส่ง​พัลส์​กว้าง 2 มิลลิ​วินาที แกน​หมุน​ของ​มอเตอร์​จะ​เคลื่อนที่​ไป​ยัง​ตำแหน่งขวามือ​สุด การ​ป้อน​สัญญาณ​พัลส์​ที่​มี​คาบ​เวลา​ช่วง​บวก​ตั้งแต่ 1.5 ถึง 2 มิลลิ​วินาที​จะ​ทำให้​เซอร์โว​มอเตอร์​หมุน​ทวน​เข็ม​นาฬิกา โดย​ถ้า​ค่า​ความ​กว้าง​พัลส์​ยิ่ง​ห่าง​จาก 1.5 มิลลิ​วินาที​ มาก​เท่าใด ความเร็ว​ใน​การ​หมุน​ก็​จะ​มากขึ้น​เท่านั้น นั่น​คือ ความเร็ว​สูงสุด​ของ​การ​หมุน​ทวน​เข็ม​นาฬิกาจะ​เกิดขึ้น​เมื่อ​สัญญาณ​พัลส์ควบคุม​มี​ความ​กว้าง 2 มิลลิ​วินาที การ​ป้อน​สัญญาณ​พัลส์​ที่​มี​คาบ​เวลา​ช่วง​บวก​ตั้งแต่ 1 ไป​จนถึง 1.5 มิลลิ​วินาที ทำให้เซอร์โว​มอเตอร์​หมุน​ตาม​เข็ม​นาฬิกา ซึ่ง​ถ้า​ค่า​ความ​กว้าง​พัลส์​เข้าใกล้ 1 มิลลิ​วินาที​ความเร็ว​ใน​การ​หมุน​ของ​เซอร์โว​มอเตอร์​ก็​จะ​มาก นั่น​คือ ความเร็ว​สูงสุด​ของ​การ​หมุน​ตาม​เข็ม​นาฬิกา
จะ​เกิดขึ้น​เมื่อ​สัญญาณ​พัลส์​ควบคุม​มี​ความ​กว้าง 1 มิลลิ​วินาที


 

Categories
บทความ ไฟฟ้า-อิเล็กทรอนิกส์

สเต็ปเปอร์มอเตอร์

อุปกรณ์แม่เหล็กไฟฟ้าที่นักอิเล็กทรอนิสก์รู้จักกันเป็นอย่างดีย่อมต้องมีชื่อของ มอเตอร์ อยู่ในสาระบบอย่างแน่นอน มอเตอร์ที่ได้รับความนิยมอย่างมากในแวดวงคนทำหุ่นยนต์และกลไกเคลื่อนไหวก็คือ มอเตอร์ไฟตรงที่มีชุดเฟืองทดหรือบางทีเรียกชุดเฟืองขับมอเตอร์หรือมอเตอร์เกียร์บ็อก, เซอร์โวมอเตอร์ และสเต็ปเปอร์มอเตอร์

คุณสมบัติเด่นของสเต็ปเปอร์มอเตอร์

• มุมในการหมุน (rotation angle) มีค่าตามสัดส่วนของจำนวนของพัลส์อินพุตที่ใช้ขับมอเตอร์
• ความเร็วในการหมุน (rotation speed) มีค่าตามสัดส่วนและสัมพันธ์กับความถี่ของสัญญาณพัลส์อินพุตที่ใช้ขับมอเตอร์
• ใช้ในการควบคุมตำแหน่งแบบระบบเปิดที่มีความแม่นยำสูง โดยไม่มีต้องใช้สัญญาณป้อนกลับของการกำหนดตำแหน่ง
• ไม่มีความผิดพลาดสะสมของการกำหนดตำแหน่ง
• เหมาะกับงานที่ต้องการกลไกเคลื่อนที่ความเร็วต่ำ แรงบิดสูง โดยไม่ต้องใช้ระบบเฟืองทดรอบเพิ่มเติม
• สามารถกำเนิดและรักษาแรงบิดได้ในทันทีที่มอเตอร์ถูกกระตุ้นให้ทำงาน
• สามารถรักษาสภาวะการหมุนของแกนได้โดยไม่ทำให้มอเตอร์เสียหาย
• ไม่มีแปรงถ่าน ทำให้มีอายุการใช้งานที่ยาวนาน
• มีลูกปืนความเที่ยงตรงสูง เพื่อช่วยการหมุนของแกนมีความแม่นยำ

ข้อด้อยของสเต็ปเปอร์มอเตอร์

• การกำทอนหรือการเกิดเรโซแนนซ์ทำให้ไม่สามารถควบคุมการทำงานของสเต็ปเปอร์มอเตอร์ได้
• การทำให้มอเตอร์สามารถหมุนแกนด้วยความเร็วสูงทำได้ยาก
• หากเกิดแรงบิดสูงสูงเกินกว่าที่รับได้หรือเกิดโอเวอร์ทอร์กมอเตอร์จะสูญเสียการรับรู้ตำแหน่งของแกนหมุน จะต้องกลับไปเริ่มต้นการอินิเชียลใหม่
• ให้แรงบิดที่น้อยกว่ามอเตอร์ไฟตรงและมอเตอร์ไฟสลับที่ขนาดของตัวมอเตอร์เท่ากัน

สเต็ปเปอร์มอเตอร์เป็นมอเตอร์ที่มีลักษณะการทำงานแตกต่างจากมอเตอร์ทั่วไป เพราะจะต้องป้อนสัญญาณเป็นพัลส์ให้แก่ขดลวดของมอเตอร์เป็นจังหวะอย่างเหมาะสม และการหมุนของมอเตอร์ชนิดนี้จะหมุนเป็นจังหวะตามพัลส์ที่ป้อนเข้ามา หากมีการป้อนสัญญาณพัลส์ต่อเนื่อง มอเตอร์ก็จะสามารถหมุนได้อย่างต่อเนื่องเหมือนกับมอเตอร์ไฟตรงปกติ ดังนั้นด้วยจังหวะในการป้อนสัญญาณพัลส์จึงทำให้ผู้ควบคุมสามารถเลือกตำแหน่งที่ต้องการให้มอเตอร์หยุดหมุนได้

จังหวะ​การ​หมุน​ของ​สเต็ปเปอร์​มอเตอร์​เรียกว่า ​สเต็ป (step) นั่น​จึง​เป็น​ที่มา​ของ​ชื่อ​ของ​มอเตอร์​ชนิด​นี้​ความ​ละเอียด​ของ​มอเตอร์​กำหนด​เป็น​องศา​ที่​หมุน​ไป​ใน​หนึ่ง​สเต็ป หาก​มอเตอร์มี​จำนวน​องศา​ต่อ​สเต็ป​มาก หมายความว่า มอเตอร์​ตัว​นี้​มีควา​ละเอียด​ของ​การ​หมุน​ต่ำ ยกตัวอย่าง การ​หมุน​ครบ 1 รอบ​เท่ากับ 360 องศา หาก​มอเตอร์​มี​สเต็​ปการ​หมุน​เท่ากับ 7.5 องศา​ต่อ​สเต็ป มอเตอร์​ตัว​นี้​มี​ความ​ละเอียด​ของ​การ​หมุน​เท่ากับ 48 ตำแหน่ง แต่​ถ้าหาก​มี​สเต็​ปการ​หมุน​กับ 1.8 องศา​ต่อ​สเต็ป ความ​ละเอียด​ของ​การ​หมุน​เท่ากับ 200 จะ​เห็น​ได้​ว่า​มอเตอร์​ตัว​หลัง​มี​ความ​ละเอียด​สูงกว่า​ตัว​แรก​มาก ทำให้​นำมาใช้​ใน​งาน​ที่​ต้องการ​กำหนด​ตำแหน่ง​ได้​ดีกว่า แม่นยำ​กว่า ผนวก​เข้ากับ​วงจร​ขับ​แบบ​ครึ่ง​สเต็ป ความ​ละเอียด​ของ​การ​หมุน​จะ​เพิ่มขึ้น​อีก 2 เท่า ทำให้​มี​ความ​ละเอียด​ของ​การ​หมุน​กลาย​เป็น 400 ตำแหน่ง

ขนาด​ของ​สเต็ปเปอร์​มอเตอร์​ที่​มี​การ​ผลิต​และ​จำหน่าย​ใน​ท้องตลาด มี​ตั้งแต่​ขนาด​แรงดัน​ต่ำ 3V ไป​จนถึง 24V และ 48V  ส่วน​ขนาด​ของ​กระแส​มี​ตั้งแต่​ไม่​กี่​สิบ​มิลลิ​แอมป์​อันเป็น​สเต็ปเปอร์​มอเตอร์​ตัวเล็ก​ไป​จนถึง​เป็น​สิบ​แอมป์ ซึ่ง​มี​ขนาด​ของ​มอเตอร์​ใหญ่​โตขึ้น​ตามลำดับ ราคา​อยู่​ใน​หลัก​เป็น​ร้อย​บาท​ขึ้น​ไป​สำหรับ​ของใหม่

ชนิดของสเต็ปเปอร์มอเตอร์

ในอดีตมีการแบ่งชนิดของสเต็ปเปอร์มอเตอร์ตามลักษณะโครงสร้างซึ่งแบ่งได้เป็น 3 ชนิดคือ แบบแม่เหล็กถาวรหรือ PM (Permanent Magnet), แบบปรับค่าความต้านทานแม่เหล็กได้หรือ VR (Variable Reluctance) และแบบผสมหรือไฮบริด (Hybrid) ซึ่งเป็นการผสมกันระหว่างแบบ PM และ VR ในปัจจุบันนี้สเต็ปเปอร์มอเตอร์ส่วนใหญ่เป็นแบบไฮบริด เนื่องจากสามารถทำให้มีความละเอียดในการเคลื่อนที่ของแกนได้สูงถึง 0.9 องศาต่อสเต็ป (ซึ่งเป็นข้อดีของแบบ VR) และให้แรงบิดหรือทอร์กที่สูง โดยใช้พลังงานต่ำ (เป็นข้อดีของแบบ PM) ในรูปที่ 1 แสดงโครงสร้างอย่างง่ายของสเต็ปเปอร์มอเตอร์แบบไฮบริด

ดังนั้นการกำหนดชนิดของสเต็ปเปอร์มอเตอร์ในยุคต่อมาจนถึงปัจจุบันจึงพิจารณาที่ลักษณะของการพันขดลวด, การต่อสายออกมาใช้งาน และวงจรขับ ซึ่งแบ่งเป็น 2 ชนิดหลักๆ คือ ชนิดไบโพลาร์ (bipolar) และชนิดยูนิโพลาร์ (uni-polar)

สเต็ปเปอร์มอเตอร์แบบไบโพล่าร์

มีลักษณะการพันขดลวดของมอเตอร์แสดงในรูปที่ 2 แบ่งออกเป็น 2 ขดที่ไม่มีแท็ปกลาง ทำให้บางครั้งจึงเรียกสเต็ปเปอร์มอเตอร์แบบนี้ว่า เป็นสเต็ปเปอร์มอเตอร์แบบ 2 เฟส การขับให้มอเตอร์แบบนี้หมุนจะต้องป้อนแรงดันต่างขั้วกันให้แก่ขดลวดแต่ละขด ทำให้วงจรขับสเต็ปเปอร์มอเตอร์แบบนี้ค่อนข้างซับซ้อน

สเต็ปเปอร์มอเตอร์แบบยูนิโพล่าร์
มีลักษณะการพันขดลวดของมอเตอร์แสดงในรูปที่ 3 มีด้วยกัน 2 แบบคือ แบบ 5 และ 6 สาย บางครั้งเรียกสเต็ปเปอร์มอเตอร์แบบนี้ว่า เป็น
สเต็ปเปอร์มอเตอร์แบบ 4 เฟส การขับจะต้องป้อนสัญญาณเข้าที่ขั้วหรือเฟสของมอเตอร์ให้เรียงลำดับอย่างถูกต้อง มอเตอร์จึงจะสามารถหมุนได้อย่างราบรื่น
 

สเต็ปเปอร์มอเตอร์แบบนี้มีการพันขดลวด 2 ขดบนแต่ละขั้วแม่เหล็กของสเตเตอร์ แต่ละขดแบ่งเป็น 2 เฟส รวมมอเตอร์ทั้งตัวจะมี 4 เฟสคือ เฟส 1, 2, 3 และ 4 มีการต่อสายออกมาจากขดลวดแต่ละขดเพื่อจ่ายไฟเลี้ยง  ทำให้สเต็ปเปอร์มอเตอร์แบบนี้มีทั้งแบบ 5 สายและ 6 สาย ถ้าเป็นแบบ 5 สาย จะเป็นการนำสายไฟเลี้ยงของขดลวดทั้งสองมาต่อรวมกันเป็นสายเดียว สำหรับในบทความนี้จะเน้นหนักไปที่สเต็ปเปอร์แบบยูนิโพล่าร์นี้ เนื่องจากสามารถหาได้ง่ายกว่า และใช้วงจรขับที่มีความซับซ้อนน้อยกว่ามาก

ขนาดของสเต็ปเปอร์มอเตอร์มาตรฐาน

เพื่อให้การเลือกใช้งานสเต็ปเปอร์มอเตอร์เป็นสากลจึงได้มีการกำหนดมาตรฐานขนาดของสเต็ปเปอร์มอเตอร์ขึ้น ภายใต้ข้อตกลงร่วมกันของสมาคมผู้ผลิตชิ้นส่วนทางไฟฟ้าแห่งชาติหรือ NEMA (National Electrical Manufacturer’s Assocation) ได้ทำการกำหนดขนาดมาตรฐานของสเต็ปเปอร์มอเตอร์ออกมา โดยแบ่งตามลักษณะรูปร่างของสเต็ปเปอร์มอเตอร์ดังนี้

1. รูปลูกบาศก์ (Cube) มีด้วยกัน 4 ขนาดคือ NEMA 14, 15, 16 และ 17 ดังแสดงรายละเอียดในรูปที่ 4
2 ทรงกระบอก (Cylinder) มีขนาดเดียวคือ NEMA 23 ดังแสดงรายละเอียดในรูปที่ 5
3. ทรงกระป๋องซ้อน (Stack can) สเต็ปเปอร์มอเตอร์ที่มีรูปร่างแบบนี้จะมีขนาดที่ไม่แน่นอน แต่ส่วนใหญ่จะมีขนาดเล็กคือ มีขนาดเส้นผ่านศูนย์กลางประมาณ 2 นิ้ว รายละเอียดทางเทคนิคอื่นๆ แสดงในรูปที่ 6
การกระตุ้นและควบคุมการหมุนของสเต็ปเปอร์มอเตอร์แบบยูนิโพล่าร์

การกระตุ้นและควบคุมการหมุนของมอเตอร์ให้เคลื่อนที่ไปแต่ละสเต็ปทำได้โดยจ่ายกำลังไฟฟ้าไปยังขดลวดแต่ละขดบนสเตเตอร์ ซึ่งต้องป้อนเป็นแบบซีเควนเชียลในรูปแบบที่ถูกต้องด้วย สามารถแบ่งได้เป็น 3 รูปแบบคือ แบบเวฟ (wave) หรือแบบฟูลเต็ป 1 เฟส (full step 1-phase), แบบฟูลสเต็ป 2 เฟส และแบบครึ่งสเต็ป (half step)

การกระตุ้นสเต็ปเปอร์มอเตอร์แบบเวฟหรือฟูลสเต็ป 1 เฟส

เป็นการกระตุ้นที่มีรูปแบบง่ายที่สุด โดยทำการกระตุ้นขดลวดทีละขดในเวลาหนึ่งไล่เรียงถัดกันไป เช่น เริ่มต้นที่ขดที่ 1, 2, 3, 4 แล้ววนกลับมาขดที่ 1 วนไปเรื่อยๆ หรือเริ่มที่ขดที่ 1 แล้วย้อนไปยังขดที่ 4, 3, 2 แล้วกลับมายังขดที่ 1 อีกครั้ง ซึ่งทำให้ทิศทางของการหมุนสวนกัน ในการกระตุ้นรูปแบบนี้จึงมีขดลวดเพียงขดเดียวในเวลาหนึ่งที่ถูกกระตุ้นเท่านั้น วงจรกระตุ้นแบบนี้มีราคาถูกและง่าย ขั้นตอนการทำงานต่างๆ แสดงดังในตารางที่ 1

การกระตุ้นแบบฟูลสเต็ป 2 เฟส

เป็นการกระตุ้นซึ่งคล้ายกับแบบฟูลสเต็ปหนึ่งเฟส แต่การกระตุ้นแบบนี้จ่ายกำลังไฟฟ้าไปที่ขดลวด 2 ขดที่อยู่ใกล้กันในเวลาเดียวกัน และเรียงถัดกันไปเช่นเดียวกับแบบฟูลสเต็ป 1 เฟส ดังตัวอย่าง ขดลวดชุดแรกที่ถูกกระตุ้นจะเป็นขดที่ 1 และ 2 ตามด้วยการกระตุ้นขดที่ 2 และ 3 ต่อไปเป็นขดที่ 3 และ 4 ถัดไปเป็นขดที่ 4 และ 1 แล้วกลับมาที่ขดที่ 1 และ 2 วนไปตามลำดับเช่นนี้ หรือเริ่มที่ขด 1 และ 4 ตามด้วยขดที่ 4 และ 3 ถัดไปเป็นขดที่ 3 และ 2 ต่อไปเป็นขดที่ 2 และ 1 แล้ววนกลับมาที่ขดที่ 1 และ 4 ทิศทางการหมุนจะสวนทางกัน การกระตุ้นสเต็ปเปอร์มอเตอร์แบบนี้สามารถเพิ่มแรงบิดได้มากกว่าแบบฟูลสเต็ป 1 เฟส โรเตอร์จะเคลื่อนที่ด้วยแรงดึงอย่างเต็มแรงจาก 2 ขดลวดที่ถูกกระตุ้นพร้อมกัน และเคลื่อนที่ต่อไปด้วยแรงดึงจากอีก 2 ขดลวดถัดไป สำหรับข้อเสียคือการกระตุ้นแบบนี้ต้องใช้กำลังไฟฟ้ามากขึ้น ขั้นตอนการทำงานต่าง ๆ แสดงดังในตารางที่ 2

การกระตุ้นแบบครึ่งสเต็ปหรือฮาล์ฟสเต็ป

เป็นรูปแบบที่ผสมผสานระหว่างการกระตุ้นแบบฟูลสเต็ป 1 และ 2 เฟส เพื่อเพิ่มจำนวน ของสเต็ปต่อรอบอีกเท่าตัวหนึ่ง ในระบบนี้จะกระตุ้นขดลวดเรียงกันไปเป็นลำดับดังนี้ เริ่มจากขดลวดที่ 1, 1 และ 2, 2, 2 และ 3, 3, 3 และ 4, 4, 4 และ 1 แล้ววนกลับมายังขดลวดที่ 1

แรงบิดที่ได้จากการกระตุ้นแบบนี้จะเพิ่มมากขึ้นอีก เพราะช่วงสเต็ปมีระยะสั้นลง แต่ละสเต็ปเกิดแรงดึงจากขดลวด 2 ขดที่ถูกกระตุ้นพร้อมกัน ความถูกต้องของตำแหน่งมีเพิ่มมากขึ้น แต่ต้องพึงระวังไว้อีกประการหนึ่งว่าเมื่อกระตุ้นให้ทำงานในรูปแบบนี้จะต้องทำการหมุนถึง 2 สเต็ป จึงจะได้เท่ากับระยะเท่ากับ 1 สเต็ปเต็มของการควบคุมใน 2 แบบแรก สำหรับแหล่งจ่ายกำลังไฟฟ้าต้องใช้ขนาดเท่ากับแบบ 2 เฟสเป็นอย่างน้อย จึงจะเพียงพอ ขั้นตอนการทำงานต่างๆ แสดงดังในตารางที่ 3

การทำงานของสเต็ปเปอร์มอเตอร์แบบไฮบริด

สเต็ปเปอร์มอเตอร์แบบไฮบริดมีแม่เหล็กถาวรที่มีลักษณะเป็นทรงกระบอกที่มีขั้วเหนือและใต้สลับกันตามแนวของทรงกระบอกทำหน้าที่เป็นส่วนของโรเตอร์ ขดลวดทั้ง 4 เฟสที่พันรอบแกนเหล็กทำหน้าที่เป็นสเตเตอร์ที่มีขั้วแม่เหล็กเปลี่ยนแปลงตามสัญญาณกระตุ้นที่ส่งเข้าไปในตัวมอเตอร์ ทำให้เกิดแรงดูดและแรงผลักกับโรเตอร์ทำให้แกนของมอเตอร์เกิดการหมุนและล็อกตำแหน่งได้ตามที่ผู้ใช้งานต้องการ

ในรูปที่ 7 แสดงภาพจำลองของการหมุนของสเต็ปเปอร์มอเตอร์ที่มีความละเอียด 15 องศาต่อสเต็ป นั่นคือ มีจำนวนสเต็ปของการหมุนครบรอบเท่ากับ 24 สเต็ปได้ โดยใช้การขับแบบฟูลสเต็ป 1 เฟส เมื่อป้อนสัญญาณพัลส์กระตุ้นเข้าที่เฟส P1 ทำให้เกิดขั้วแม่เหล็กใต้ขึ้น จึงเกิดแรงผลักขั้วแม่เหล็กใต้ของเพื่อให้พบกับขั้วแม่เหล็กเหนือของโรเตอร์ ในจังหวะนั้นเองแกนหมุนของมอเตอร์จะเกิดการเคลื่อนที่เปลี่ยนตำแหน่งไป 1 สเต็ป เมื่อขั้วแม่เหล็กใต้ของสเตเตอร์พบกับขั้วแม่เหล็กเหนือของโรเตอร์จะเกิดแรงแม่เหล็กดูดกัน ทำให้แกนหมุนหยุดนิ่ง ถ้าสังเกตต่อไปที่ขั้วของสเตอร์ของขดลวดในเฟสที่เหลือจะพบว่ามันเหลื่อมกัน ทำให้แรงแม่เหล็กเกิดการหักล้างกัน

จากนั้นป้อนสัญญาณเข้าที่เฟส P2 ทำให้เกิดขั้วแม่เหล็กเหนือขึ้นที่สเตเตอร์นั้น ทำให้เกิดแรงผลักอีก 1 จังหวะ ส่งผลให้แกนหมุนของมอเตอร์เคลื่อนที่ต่อเนื่องไปอีก 1 สเต็ป เมื่อขั้วแม่เหล็กเหนือของสเตเตอร์พบกับขั้วแม่เหล็กใต้ของโรเตอร์จะเกิดแรงแม่เหล็กดูดกัน ทำให้แกนหมุนหยุดนิ่ง และจะเป็นเช่นนี้ไปตลอดหากมีการป้อนสัญญาณกระตุ้นไล่ตามลำดับมายัง P3 และ P4 แล้ววนกลับไปที่ P1 อีก แกนหมุนของมอเตอร์ก็จะเกิดการเคลื่อนที่เปลี่ยนมุมไปอย่างต่อเนื่องจนครบ 1 เมื่อเคลื่อนที่ครบ 24 สเต็ปหากสเต็ปเปอร์มอเตอร์มีความละเอียดของการหมุนมากขึ้น เช่น 7.5 องศาต่อสเต็ป จำนวนสเต็ปที่ต้องการใน 1 รอบจะเพิ่มเป็น 48 สเต็ป และสูงถึง 200 สเต็ปหากมอเตอร์มีความละเอียด 1.8 องศาต่อสเต็ป

วงจรขับสเต็ปเปอร์มอเตอร์อย่างง่าย
จากการทำงานที่อธิบายมา เราสามารถใช้วงจรขับสเต็ปเปอปร์มอเตอร์ได้หลายแบบ โดยมีหลักการที่ตรงกันคือ ป้อนสัญญาณกระตุ้นอย่างเป็นลำดับที่ถูกต้องแก่ขั้วหรือเฟสของสเต็ปเปอร์มอเตอร์ และถ้าหากต้องการให้มอเตอร์หมุนเร็วหรือช้าให้ทำการกำหนดหรือปรับแต่งที่ความถี่ของสัญญาณกระตุ้นที่ใช้ขับมอเตอร์ในรูปที่ 8 แสดงวงจรขับสเต็ปเปอร์มอเตอร์แบบยูนิโพล่าร์อย่างง่ายแบบฟูลสเต็ป 1 เฟสที่ไม่ต้องใช้ไมโครคอนโทรลเลอร์ เพียงมีวงจรกำเนิดสัญญาณพัลส์ซึ่งในวงจรใช้ไอซีเบอร์ 4093 (อาจใช้เบอร์ 4011 แทนได้) ส่งสัญญาณไปยังวงจรจัดการลำดับของสัญญาณกระตุ้น ซึ่งในวงจรใช้ไอซีเบอร์ 4017 เข้ามาจัดการเพื่อให้มีการส่งสัญญาณกระตุ้นไปยังมอเตอร์ทีละเฟส ส่วนวงจรขับจริงๆ ใช้ไอซีขับโหลดกระแสสูงเบอร์ ULN2003
ทั้งหมดนี้คือเรื่องราวเบื้องต้นที่ควรทราบของสเต็ปเปอร์มอเตอร์แบบยูนิโพล่าร์
Exit mobile version